Bed roughness estimation in gravel-bed rivers using UAV-
SfM photogrammetry: flume and numerical application
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Introduction Experimental set-up
In gravel-bed rivers, bed roughness is one of the key factors that influence flow  Model with a scale factor of 35in geometry to study bar dynamics

* Straight channel with 35 m long, 2.6 m wide and a slope of 0.17%

* Constant discharge of 34.5 |/s
- mobilisation of only two
classes of sand

resistance, shear stress and substrate texture. High variation of bed roughness
can be observed in gravel-bed rivers as fine patches are often observed in
pools and on bars while coarse patches can be observed in zones with high
velocities such as the main channel. Recently, the unmanned aerial vehicle
(UAV)-Structure from Motion (SfM) photogrammetry has been implemented
for roughness estimation in gravel-bed rivers, which enables to obtain both ¥
spatial and temporal roughness information with less labour and lower é =
material costs. This spatial roughness information =
combined with hydraulic data facilitate N~ |
the calibration of the friction coefficient S =iy = —— — — 8/ SLghQe
in hydrodynamic models, which is S e, < I ) @@~ + Channel started from the plane bed (T0) and ended up with
usually challenging for gravel-bed the multichannel bed with (0.07%) separated by bars

Table 1. Grain-size of the flume bed

* Manual sand feed from upstream
* 1.07 I/h for 840 h (T1)
* Increase to 2 I/h until 1200 h (T2)

4 > Non-erodible banks made of gravels
* Mobile bed made of sand mixture

streams due to their high spatial Photogrammetric data acquisition Grain size (mm)
heterogeneity of bed surface grain size. D e DJI Mavic 3 + 15MP camera % |Prototype| Model | Scale
Obiective cl 32| 12 0.6 | 18.47
) * Focal length of 12.29 mm /[ Metashape |36] 28 14 | 2024
1. To estimate the bed roughness using data from UAV-SfM photogrammetry 4 m over the flume 32| 55 2.3 | 23.56
2. To understand the spatio-temporal variation of bed roughness along a flume run  Three UAV surveys at TO (O h), T1 (840 h), and T2 (1200 h), respectively
3. To improve the friction coefficient calibration of a 2D hydrodynamic model o Agisoft Metashape to obtain a 2D orthomosaic and a dense point cloud
Roughness metric estimation Variation of bed roughness during a 1200 h run
Roughness height rh (Vazquez-Tarrio et al., 2017): . Ortho TO (0 h)
+ Difference in height between the point and the best- =% - 6_— |
fitting plane of a neighbourhood of points in the point = = .~ - "~ Ortho T1 (840 ) - - * General bEd. cOdTSEning from T0 to Ti
cloud (estimated in CloudCompare). SR 3 e e aLanter the sediment deficit ;
* high value of rh refers to great difference in altitude 2 | e pstream coarsening over time due 1o

the forcing of the deflector

* C(Clear spatial bed roughness signature in
related to geomorphic units

 Upper end of rh cumulative distribution
IS more sensitive to the roughness
changes while median of entropy is
more sensitive to the roughness changes

a rough bed surface and vice versa. __ Ortho T2 (1200 h)

Entropy (Wong et al., 2024):

* Transformation of a raw grey scale orthomosaic into a
textural image where the value of each pixel
corresponds to an entropy estimated with the
cooccurrence matrix below (estimated using scikit-
image Entropy in Python):
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Effects of spatial roughness on flow velocity in 2D
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f | d b d Figure 1. Map of rh and entropy in Zoom 1 at T1 Figure 2. Cumulative frequency distrbution of rh and entropy in Zoom 2 at TO, T1 and T2
Uniformly distributed Spatially distributed LSPIV velocity
friction (UF) friction (SF) Usr — Uyr measurement

Effects of spatial roughness on grain mobility in 2D model

2D model U_sf-U_uf
U (m/s Delta U (m/s)
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0.41-0.47 :
0.47 -0.53 . . . o ] ] Underestimated
telemac 0.53 - 0.59 * C(Clear refinement in low grain mobility case with spatially Samelmobility
- 8(75?8;; distributed friction, especially in the main channel and edge of bars S el Ed
- 8§§8§§ * Less sensitive to friction coefficient in high grain mobility case
Perspectives & Conclusion References
* rh and entropy can directly correlate to the surface GSD for the surface grain size sorting investigation, a surface GSD et Sheraerammans o e e
sampling in the bed would be required to verify this correlation. e o oaon, | cq rver (Vencon River French
* The applicability of this method can be tested in flumes with different GSD (gravel to fine sediment) o e o
* Spatially distributed friction refined both flow velocities and grain mobility in 2D model especially in low mobility case oo o oo aa(1), ey CErepny: Earth Surfoce
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